Isotopomeric characterization of N2O produced, consumed, and emitted by automobiles.
نویسندگان
چکیده
Fossil fuel combustion is the second largest anthropogenic source of nitrous oxide (N2O) after agriculture. The estimated global N2O flux from combustion sources, as well as from other sources, still has a large uncertainty. Herein, we characterize automobile sources using N2O isotopomer ratios (nitrogen and oxygen isotope ratios and intramolecular site preference of 15N, SP) to assess their contributions to total global sources and to deconvolute complex production/consumption processes during combustion and subsequent catalytic treatments of exhaust. Car exhaust gases were sampled under running and idling state, and N2O isotopomer ratios were measured by mass spectrometry. The N2O directly emitted from an engine of a vehicle running at constant velocity had almost constant isotopomer ratios (delta15Nbulk = -28.7 +/- 1.2 per thousand, delta18O = 28.6 +/- 3.3 per thousand, and SP = 4.2 +/- 0.8 per thousand) irrespective of the velocity. After passing through catalytic converters, the isotopomer ratios showed an increase which varied with the temperature and the aging of the catalysts. The increase suggests that both production and consumption of N2O occur on the catalyst and that their rates can be comparable. It was noticed that in the idling state, the N2O emitted from a brand new car has higher isotopomer ratios than that from used cars, which indicate that technical improvements in catalytic converters can reduce the N2O from mobile combustion sources. On average, the isotopomeric signatures of N2O finally emitted from automobiles are not sensitive to running/idling states or to aging of the catalysts. Characteristic average isotopomer ratios of N2O from automobile sources are estimated at -4.9 +/- 8.2 per thousand, 43.5 +/- 13.9 per thousand, and 12.2 +/- 9.1 per thousand for delta15Nbulk, delta18O, and SP, respectively.
منابع مشابه
Disentangling gross N2O production and consumption in soil
The difficulty of measuring gross N2O production and consumption in soil impedes our ability to predict N2O dynamics across the soil-atmosphere interface. Our study aimed to disentangle these processes by comparing measurements from gas-flow soil core (GFSC) and 15N2O pool dilution (15N2OPD) methods. GFSC directly measures soil N2O and N2 fluxes, with their sum as the gross N2O production, wher...
متن کاملIsotopologue signatures of nitrous oxide produced by nitrate-ammonifying bacteria isolated from soil
Agricultural soils are the largest single source of anthropogenic N2O to the atmosphere, primarily driven by microbiological processes such as denitrification and dissimilatory nitrate reduction to ammonium (DNRA). Both processes occur under similar conditions of low oxygen concentration and therefore, source partitioning of emitted N2O is difficult. Understanding what controls the dynamics and...
متن کاملRole of nitrification and denitrification on the nitrous oxide cycle in the eastern tropical North Pacific and Gulf of California
[1] Nitrous oxide (N2O) is an important atmospheric greenhouse gas and is involved in stratospheric ozone depletion. Analysis of the isotopomer ratios of N2O (i.e., the intramolecular distribution of N within the linear NNO molecule and the conventional N and O isotope ratios) can elucidate the mechanisms of N2O production and destruction. We analyzed the isotopomer ratios of dissolved N2O at a...
متن کاملEvaluation of leachate recirculation on nitrous oxide production in the Likang Landfill, China.
Landfill leachate recirculation is efficient in reducing the leachate quantity handled by a leachate treatment plant. However, after land application of leachate, nitrification and denitrification of the ammoniacal N becomes possible and the greenhouse gas nitrous oxide (N2O) is produced. Lack of information on the effects of leachate recirculation on N2O production led to a field study being c...
متن کاملAcidification Enhances Hybrid N2O Production Associated with Aquatic Ammonia-Oxidizing Microorganisms
Ammonia-oxidizing microorganisms are an important source of the greenhouse gas nitrous oxide (N2O) in aquatic environments. Identifying the impact of pH on N2O production by ammonia oxidizers is key to understanding how aquatic greenhouse gas fluxes will respond to naturally occurring pH changes, as well as acidification driven by anthropogenic CO2. We assessed N2O production rates and formatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Rapid communications in mass spectrometry : RCM
دوره 22 5 شماره
صفحات -
تاریخ انتشار 2008